Analog Cable Status

- Basic design fixed --- the latest cable has good quality. (report by Frank)
- Capacitance for single cable ~0.35pF/cm --- both new and old cable OK.
- The remaining unknown are;
 - > Laminated or not.
 - > Spacer material and its thickness.

Proximity to the Shielding

- Only the difference is the weight on top of the cables.
 - → Proximity to the shielding material.

Proximity to the Shielding (cont'd)

• Spacer: 75μm thick Kapton and/or 200μm thick polypropylene mesh sheet.

Proximity to the Shielding (cont'd -2)

• Unit is in ADC counts (1ADC ~ 700 e)

Table 1: The noise level in unit of ADC counts. Two cables stacked together. Underneath the cables is the grounding/sheilding copper G10. Kap. denotes Kapton, and PP denotes polypropylene.

space btwn two cables	space btwn btm cable and shielding	top	bottom
no weight	no weight		2.8
none	$525\mu\mathrm{m}$ Kap.		3.0
none	$300\mu\mathrm{m}$ Kap.	3.3	3.7
$225\mu\mathrm{m}$ Kap.	$300 \mu \mathrm{m}$ Kap.	3.2	3.6
none	$75\mu\mathrm{m}$ Kap.	4.3	5.3
none	$75\mu\mathrm{m}$ Kap. and $400\mu\mathrm{m}$ PP mesh	2.8	2.9
$225\mu\mathrm{m}$ Kap.	$75\mu m$ Kap. and $400\mu m$ PP mesh	2.8	2.8
none	$75\mu\mathrm{m}$ Kap. and $200\mu\mathrm{m}$ PP mesh	3.2	3.3

• The error ~ 0.1 or 0.2 ADC counts. (my eye ball scan)

Laminated or not?

- Capacitance for laminated cables: 0.51pF/cm (by Frank)
- ANSYS calculation: 0.47pF/cm for the dielectric of 2.5 for the spacer.
- Noise measurement with the non-laminated cables.
- Noise level does not affected by the spacer between the two cables.

 contradictory with the capacitance measurement and ANSYS calculation.
 - ← This may be explained by the fact that there is still air gaps between the non-laminated cables. Or additional capacitive coupling introduced by the lamination?
- This must be clarified by building new prototype module with laminated cable.
- Bonding issue must be also addressed.

Spacer

- Candidates: Kapton mesh and polypropylene mesh.
- For non-laminated cable, 200µm is good enough for between each cable. May be possible to reduce.
- Between cable and shielding material, 400µm may need for polypropylene mesh, hopeless for normal Kapton, and needs to be tested for Kapton mesh.
 - → Need tests with Kapton mesh.

Radiation length

Min (2 cables)		Max (12 cables)		
100μm Kapton	0.04%	600µm Kapton	0.21%	
3μm Cu (a)	0.02%	16μm Cu (a)	0.11%	
300µm (b) polypropylene	0.07%	1300µm (b) polypropylene	0.32%	
20μm Al (c)	0.02%	20μm Al (c)	0.02%	
Total	0.15%	Total	0.66%	

- 200µm thick polypropylene mesh for each layer.
- (a) 16% of area occupancy is taken account.
- (b) 50% of volume occupancy assumed. May be possible to reduce.
- (c) heavy duty aluminum foil was measured to be 20μm thick.

L0 grounding issues

- We should decide:
 - > Ground at hybrid only, or ground both at hybrid and sensor?
 - \leftarrow Resistance (HV/GND trace) of analog cable ~ 10 to $20~\Omega$.
 - ➤ Is shielding metal connected to hybrid GND or sensor GND?
 - > The actual mechanical way of connection.
 - ☐ Hybrid support to GND
 - ☐ L0 support to GND

Example of Grounding Effect

• Module on the structure w/o any shielding. (support structure grounded through analog cable.)